The importance of the Fuel Design

Markus Birkhofer
AREVA Fuel BU Executive Vice President

Atoms for the Future 2012
October 24th, 2012 - Paris
The importance of Fuel Design

Contents

- Fuel Assembly: A highly engineered and technologically specific product
- Fuel Assembly Design is key for Performance
- Fuel Assembly Design is decisive to ensure Fuel Reliability and optimized Operation
- Modeling is essential for Design optimization
- What the Future of Designing might be…
Fuel Assembly: A highly engineered and technologically specific product
Fuel Assembly: Just a set of sticks?

PWR Fuel

BWR Fuel
No! Fuel Assembly is the Oil and the Engine

The Oil
- Enriched uranium pellets (or Mixed Oxide or Enriched Reprocessed Uranium pellets) loaded into zirconium rods
- ~ 200 W / cm

The Engine
- A ~4 m structure made of guide tubes bundled together with grids
- Flow and geometry control
 - Nozzles Allow coolant flow outlet/inlet and Bottom nozzle stop debris
 - Spacer grids ensure the positioning of the fuel rods
- Insertion of Rod Cluster Control Assembly (RCCA) for reactivity control
- ~ 700 kg (PWR FA)
No! Nuclear Fuel is a highly engineered product

- 1st barrier against nuclear contamination
 - Integrity of the fuel rod under extreme conditions of temperature, pressure and flow (PWR conditions: ~155 bar / ~350 °C / 5m/s water flow)
 - Maintained geometry under normal and accidental conditions

- Long time to market due to extensive testing
 - ~10 to 15 years for a new product
 - One type of product per type of reactor

- Highly challenging requirements
 - Utilities expect 0 issues / 0 defaults with their fuel
 - Excellence in manufacturing is decisive
A large set of tests to support the Fuel Assembly Design activities (1/2)

Tests before irradiation in hydraulic facilities (Kathy, Hermes, Peter)

- Thermal hydraulic Testing in the Kathy loop
 Karlstein, Germany
 - BWR bundle for Dry Out tests
 - Campaign of CHF tests for a new PWR grid

- Mechanical endurance test to assess FA behavior under vibration
 - Hermes, CEA test loop for wear evaluation
 - Peter loop, Erlangen for vibration mode identification

Design Qualification and Licensing
A large set of tests to support the Fuel Assembly Design activities (2/2)

- **Tests on irradiated components**
 - Hot cell examinations
 - Ramp tests in experimental reactors
 - Characterization of mechanical behavior of irradiated material

- Design option validation / Modeling Database / Investigation on failed fuel
A complex and parcelled Fuel Market

PWR Plants

<table>
<thead>
<tr>
<th>CE</th>
<th>W</th>
<th>FRA</th>
<th>KWU</th>
<th>B&W</th>
</tr>
</thead>
<tbody>
<tr>
<td>14x14</td>
<td>14x14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15x15</td>
<td>15x15</td>
<td>15x15</td>
<td>15x15</td>
<td></td>
</tr>
<tr>
<td>16x16</td>
<td>16x16</td>
<td>16x16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17x17 12’</td>
<td>17x17 12’</td>
<td>17x17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17x17 14’</td>
<td>17x17 14’</td>
<td></td>
<td>18x18</td>
<td></td>
</tr>
</tbody>
</table>

BWR Plants

<table>
<thead>
<tr>
<th>GE</th>
<th>KWU</th>
<th>ABB</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x8</td>
<td>8x8</td>
<td>8x8</td>
</tr>
<tr>
<td>9x9</td>
<td>9x9</td>
<td>9x9</td>
</tr>
<tr>
<td>10x10</td>
<td>10x10</td>
<td>10x10</td>
</tr>
<tr>
<td>11x11</td>
<td>11x11</td>
<td>11x11</td>
</tr>
</tbody>
</table>

- **Wide range of operating conditions**
 - Cycle lengths and loading patterns
 - 6 to 24 months
 - 1/2 to 1/5 fuel management
 - Coolant temperature and chemistry
 - Li up to 5 ppm / Zn injection
 - Linear heat rate
 - From 130 to 240 W/cm

- **Almost always at least 2 international suppliers are able to provide any specific FA design**

- **A wide variety of plants requiring specific fuel assembly designs**
 - Over 136,000 AREVA PWR fuel assemblies supplied in 140 PWRs worldwide
 - Almost 74,000 AREVA BWR fuel assemblies supplied in 60 BWRs worldwide
A small Cost for a Great Stake

Relative breakdown Generation Cost

- Operating and maintenance: 56%
- Front-end: 28%
- Back-end: 6%
- Depreciation: 10%

- Design-Fabrication: ~15%
- Enrichment
- Conversion
- Natural Uranium

~85%
Fuel Assembly Design is key for Performance
Constant concern to match utility needs by increasing performance through …

- Improved fuel cycle economy and reparable
 - Improved T/H performance and reliability
 - Enhanced Performance, Reliability and Handling
 - Enhanced Robustness
M5®: A Breakthrough Cladding Supporting PWR Fuel Rod Performance

- High corrosion resistance
 - Impressive gain vs. Zircaloy-4 allowing high BU applications
- Extremely low hydrogen uptake
 - EOL hydrogen content < solubility limit in operation
- PCI technological limit pushed higher
 - Allows extension of plant operating diagram and relaxation of PCI induced limitations

M5® cladding provides margins for fuel management upgrades and flexibility in operation compared to Zircaloy 4
Performance
25 year Increasing Discharge Burnups

Average Discharge Burnup - PWR [MWd/kgU]

Year of Discharge

Worldwide Experience

Burnup of Peak Reload Batch

Average of All Fuel Assemblies Discharged Each Year

25 30 35 40 45 50 55 60

Atoms for the future 2012 - Importance of Fuel Design - Markus Birkhofer - Paris, France - Oct. 24th, 2012 - Property of AREVA GROUP - © 2012 - All rights reserved - p.15

See liability notice
Fuel Assembly Design is decisive to ensure Fuel Reliability and smooth Operation

Some examples
Beginning of the 2000’s, AREVA experienced grid-to-rod fretting of AFA 2G fuel assemblies in some 17x17 14 ft

- GTRF issue occurred after GEMMES fuel management implementation in the 14ft 4 loop plants (Fuel assembly burnup Increase)
- Higher axial flow rate (+14%) and higher transverse flow (+60%) in the first span of the fuel assembly in a 14ft 4 loop plant
- Only at the bottom grid level

Grid To Rod Fretting

Development and Implementation of the “twin grid” concept on the 14 ft designs in 2002

- 14 ft AFA 3G design has not been concerned any more by GTRF
- As of May 2012, more than 8,300 fuel assemblies were irradiated in 23 14 ft plants
Resistance to FA deformation: Monobloc® Guide Tube and Hold Down system Optimization

- Mid of the 90’s, AREVA experienced severe fuel assembly distortions of AFA 2G fuel assemblies with 17x17 designs
 - Extensive fuel assembly bow measurements (14,000 available as of December 2010) to support understanding program and modeling
 - Systematic rod drop time measurements at end of each cycle

- Prompt implementation of a thick MONOBLOC® guide tube with appropriate Hold Down spring force reduction
 - As of May 2012, more than 26,500 fuel assemblies are made of MONOBLOC® guide tubes
 - These improvements reduced the in-core deformation by about a factor 2

RCCA Drop Time Abnormality Indicator Value

<table>
<thead>
<tr>
<th>RCCA Drop Time Abnormality Indicator Value</th>
<th>0.0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

900 MW
1300 MW
Modeling is essential for Design optimization
FA deformation Modeling

► Development launched in 1993
 ◆ Mechanical and hydraulic modeling
 ◆ A large FA deformation measurement database

► Accelerated in 2002
 ◆ Fluid Structure Interaction modeling
 ◆ STAR CD Hydraulic calculation
 ◆ More powerful computation

Schematic Visualization of FA Bow in a PWR core
Complex collective phenomena can be reproduced and design changes assessed with confidence.
What the Future of Designing might be…
Three main drivers

- **Highest safety standards**
 - Training for awareness
 - Advanced codes & methods

- **Human Performance**
 - Decisive for securely achieve right design

- **Knowledge Management**
 - A main stake for all actors of the nuclear fuel industry

A step forward in Performance and Achievements
Safety will remain the first objective

The safety principles rationale (re-)explained

- A specific Safety course
 - Understanding the rationale behind the criteria
 - Knowledge of the underlying assumptions
 - Radiological impact root criteria
- Real accidents and their 3 simultaneous root causes
 - Programmatic, Material and Human

A Governance Giving Priority to Training and People Development

- Benchmark of technical and quality training investments in all regions
 - Mentoring, technical courses, quality system mastering,…
- Planning quantitative competency building individually (600 plans)

Acting with the highest level of awareness
Implementation of advanced Codes & Methods

ARCADIA® / ARGOS
- Full core 3D T/H calculations with subchannel by subchannel
- Mechanical and T/H fuel and core design codes: A step forward
 - FA bow simulation including mechanical and FSI effects
 - Fuel Rod bow and Fuel Assembly growth simulations
 - CFD tools to select the best solutions for new and improved products

GALILEO
- 1400 fuel rod worldwide database, including MOX
- Conservative Thermal mechanical assessment in all operating conditions
- Implementation of advanced Codes & Methods
 - FA bow simulation including mechanical and FSI effects
 - Fuel Rod bow and Fuel Assembly growth simulations
 - CFD tools to select the best solutions for new and improved products

XEDOR™
- Unique on-line PCI risk monitoring for BWR
- XEDOR™ implementation

Atoms for the future 2012 - Importance of Fuel Design - Markus Birkhofer - Paris, France - Oct. 24th, 2012 - Property of AREVA GROUP - © 2012 - All rights reserved - p.25
Always more cooperation between Utilities and Fuel Suppliers

The fuel rod is the first safety barrier

FUEL

Safety

Reliability

Performance

Fuel is a technically specific product

Quality of interaction between the 3 actors will remain the best guarantee of Safety, Reliability and Performance
Take Away

- Fuel Assembly is a highly engineered and technologically specific product

- Capitalizing 25 years of continuous improvement

- Leading to Enhanced Performance & Reliability in Operation

- Going forward with….
 - R&D focused on modeling
 - Safety culture orientation
 - Secured knowledge management
 - Active collaboration between all actors
Thank you for your attention!

The importance of Fuel Design

Markus Birkhofer
AREVA Fuel BU Executive Vice President

Atoms for the Future 2012
October 24th, 2012 - Paris
AFA fuel assembly (first generation)

Bi-metallic grid design implementation

- Move from all Alloy 718 grids to AFA bi metallic grid in 1985
 - Need to decrease Alloy 718 content of the fuel assembly
 - Keep acting grid spring forces as long as possible to prevent grid to rod fretting (GTRF)

- Implementation of screwed connections to the upper and lower nozzles
 - Not to get anymore fuel assemblies definitely discharged because of a leaking fuel rod
AFA second generation fuel assembly
Enhanced performance and reliability

- Move to the AFA 2G grid design
 - Improvement of the vane size and pattern
 - Capability to meet higher CHF performance request

- Move to Zy4 low tin cladding and anti-debris nozzle from 1991
 - Increased burn-up and high duty conditions required cladding with higher performances with regard to corrosion
 - At that time, debris fretting brought about most of the cladding failures
AFA third generation fuel assembly

Enhanced robustness

- Implementation of a thick MONOBLOC® guide tube with appropriate holddown spring force reduction

- Implementation of the “twin grid” concept on the 14 ft designs to avoid GTRF

- Improved AFA 3G grid against handling hazard

- Implementation of the anti-debris Trapper bottom nozzle

- Move to M5® material for cladding and structure components
Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless AREVA has provided its prior and written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided. Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.
Back-Up Slides
GAIA fuel rod features offer a variety of benefits for maximum flexibility in PWR fuel managements.
Mitigation of PCI-induced stress

PCI Critical area - BU : 20-50 GWd/tU

- M5® / UO₂ safe zone
- M5® / Cr₂O₃-doped fuel benefit zone
- Zy-4/UO₂ - Non-Failed
- Zy-4/UO₂ - Failed
- M5/UO₂ - Non-Failed
- M5/UO₂ - Failed
- Zy-4/Cr₂O₃-doped UO₂ - Non-Failed
- M5/Cr₂O₃-doped UO₂ - Failed
- M5/Cr₂O₃-doped UO₂ - Non-Failed

\(\Delta P_{\text{max}} \) (W/cm)
A Robust Fuel Rod Welding Process

- AREVA fuel experienced some fuel failures due to weld defects in 2005 (Root cause: Pollutant contamination)

- Best Practice Study launched
 - French and Belgian manufacturing facilities using laser and TIG welding
 - German and US facilities using upset shape welding (USW)

- USW determined Best Practice
 - AREVA facilities transitioned to USW by 2007

More than 5 000 000 leak proof welds
A smooth loading of the AFA 3G fuel rods

- AFA 3G fuel experienced early leakages (small holes in the cladding)
 - Root cause: Harmful shavings created during loading of fuel rods in the fuel assembly structures

- Decisive corrective actions
 - Corrective actions in fuel manufacturing plants to ensure a smooth loading of the fuel rods into the fuel assembly structure
 - Implementation of loading of fuel rods lubrication in manufacturing plants

- AFA 3G early leaking rate divided by a factor ~ 10

Back to high reliability records
A step forward in Mechanical Modeling

- Secured resistance to grid-to-rod fretting ensured by analytical and experimental means from AREVA and CEA
 - CFD/LES simulations, Peter loop test, autoclave tests, HERMES P loop test

- Tools to support enhancement of fuel assembly resistance to lateral deformation
 - Fluid structure interaction (Peter loop), Network modeling
A step forward in Thermal Hydraulic and Neutronics Modeling

- CFD tools and AREVA facilities (KATHY loop) to secure and speed up the Design improvement process
 - Easier Grid vane Design Optimization

- AREVA started implementing a new generation of advanced Codes & Methods integrating state of the art physics
 - Full 3D information for entire core
 - → more precise analysis
 - → more insight / understanding
Human Performance at the heart of the Design Activities

Instilling Safety-Quality Culture and Adequate Behaviors

- A set of easy-to-use support tools
- Based on
 - Systematic questioning of calculations, assumptions ➔ Questioning Attitude, Peer Reviews…
 - Avoiding misunderstanding in the transmission of information between individuals ➔ Pre-job briefing, turnover…
 - Systematic analysis of deviations
 - Generalization of good-catches
 - ...
- And a quarterly review process closely involving the managers

Documented methods and continuous controlling process to achieve the right mindset and performance in a sustainable way

A global approach HU / Safety with practical examples: numerous small deviations can lead to 1 main safety issue
Knowledge Management: A main Stake

A Fuel Design Organization Leveraging all assets

Global and Local: exhaustive and responsive

An Organization making all AREVA Knowledge available to our Customers for the Sake of the Public